
Modo Job Submission
Step by step instructions for submitting Modo jobs with Qube!

Step 1 (First Time Only)

Install the Qube! Submission UI into Modo
If you want the submission menu inside of Modo (recommended) then install
the InApp plugins via the Qube! WranglerView as shown here. To do this,
launch the WranglerView:

Windows: Double-click the color desktop icon
OS X: Find the color icon in Applications/pfx/qube and double-click on
it

Then navigate to the File menu, choose "Install App UI" and choose "Install
Modo (cmdrange) App UI"

Browse to the user folder to install the scripts example:
"C:\Users\Administrator\AppData\Roaming\Luxology"

You will need to do this on every workstation that you intend to submit Modo
jobs from. If you don't see the "Maya App UI" entry in the menu, the Maya
JobType was not installed. This should have happened with you installed the
Worker, but if not, see for details of installing it.this page

Step 2
Once installed you should be able to locate the "Qube!" menu in Modo's menu
bar.

With a scene loaded in Modo choose "Submit Modo (cmdline) Job...".

Step 3
This will present a pre-filled submission UI like the one shown here. Ensure
sections marked in red have the correct details.

Useful Settings
While not strictly required, the following settings are useful for getting
a better result. You will need to turn on "Expert Mode" (check box at
the bottom of the submission UI) in order to get access to them.

Optimize the use of cores. Set the "Slots = Threads"
checkbox and then set the "Specific Thread Count" to a
value like 8 (assuming you have 8 cores). (If you have
Designer licenses, only set the thread count. checkDo not
"Slots = Threads")
By default, Qube! will not retry failed frames. So set the
"Retry frame/instance" value to 3 or 5, to get 3 or 5 retries
before it gives up. Related to that, the default wait between
retries is zero seconds, which is typically not useful. Set the
"Retry Work Delay" to a value like 5 or 10 to allow machines
time to recover from temporary problems such as network
errors.

http://docs.pipelinefx.com/display/QUBE066/Installing+Additional+JobTypes

Step 4
Click 'Submit'

For further details on the submission UI see below.

Job Submission Details

Click here for details...

Name
This is the name of the job of the job so it can be easily identified in the Qube! UI.

Priority
Every job in Qube is assigned a numeric priority. Priority 1 is higher than priority
100. This is similar to 1st place, 2nd place, 3rd place, etc. The default priority
assigned to a job is 9999.

Instances
This is the number of copies of the application that will run at the same time across
the network. The combination of "Instances=1" and "Max Instances=-1" means that
this job will take as much of the farm as it can, and all jobs will share evenly across
the farm.

Examples:

On a 12 slot(core) machine running Maya if you set
"Instances" to 4
"Reservations" to "host.processors=3"
Qube! will open 4 sessions of Maya on the Worker(s) simultaneously, which may
consume all slots/cores on a given Worker.

if you set
"Instances" to 1
"Reservations" to "host.processors=1+"
Qube will open 1 session of Maya on a Worker, consuming all slots/cores
("host.processors=1+" is used for all slots/cores).

Max Instances
If resources are available, Qube! will spawn more than 'Instances' copies of the
application, but no more than 'Max Instances'. The default of -1 means there is no
maximum. If this is set to 0, then it won't spawn more than 'Instances' copies.

More on & & Instances Reservations SmartShare Studio Defaults

Click here for details...

Range

Frame range for the job (e.g 1-100, or 1-100x3, or 1,3,7,10). Most jobs require a
frame range to execute on the Workers. You can set this range in a few different
ways :

"1-100" will just render the range between 1 and 100

Not all sections need to be filled in in order to render only the fields marked in are requiredred

http://docs.pipelinefx.com/display/QUBE066/Job+Structure
http://docs.pipelinefx.com/display/QUBE066/Job+Reservations
http://docs.pipelinefx.com/display/QUBE066/SmartShare+Studio+Defaults

"1-100x3" will render every 3rd frame in the range 1 to 100; 1, 4, 7, ..., 94,
97, 100
"1,3,7,10" will only render the selected frames 1,3,7,10

rangeOrdering
Order to render the items.
(Ascending=1,2,3,4,5...,Descending=10,9,8...,Binary=first,middle,last...) You can
set the order in which your frames are rendered. The drop down options are:

"Ascending" - this will render the frames counting upwards from your start
frame
"Decending" - this will render the frames counting backwards from your
end frame
"Binary" - This will render the first, last, and middle frames of the range,
then the middle frame of the first half and the middle frame of the second
half, and so on. This is useful for sampling the frames in the sequence to
make sure it is rendering correctly.

Click here for details...

Use Preview Frames

Enabling preview frames will create 2 jobs:

A primary dependent job with a higher priority that will render the selected
frames first
A secondary job with lower priority that will render the remaining frames. T
his will return the selected frames faster so that you can check the
accuracy of your renders.

Frame Numbers

Choose the frames that you wish to render first. If left blank the default is to render
the first frame, the last frame and the middle frame in that order. You can select
specific frames by adding comma separated frame numbers e.g 1,2,10,15,75, or a
range with, e.g., 1-100x5 (1 to 100, every 5th frame)

Preview Priority

Choose the priority for the preview job. This can be set by the site admin.

Preview Subjobs

Choose the number of instances / subjobs for the preview frames. By default, this
is equal to the number of preview frames - that is, it will try to do all the preview
frames at the same time.

Note that when you submit a job with preview frames enabled, it will actually submit
2 jobs—one with the preview frames list at a higher priority, and another with the
rest of the agenda, at the normal priority (as specified in the job's field).Priority
You will get, consequently, 2 job IDs for the submission.

Click here for details...

New in 6.4-4
For applications/renderers that do not support using all cores while rendering (or
changing that behavior, eg AfterEffects or 3dsMax), this section is not visible.

Render on all Cores
Checking this box means that once this job is assigned to a
machine, no more jobs or instances will be assigned to the same
machine until this job is complete. You might choose this if your
know your render job is very memory intensive and shouldn't run
alongside other jobs.

Min Free Slots
This is the number of slots that must be available on a worker in
order for the worker to accept the job. For example, if you choose
'1', a worker with 7 out of 8 cores already in use will still accept
this job. However, if you were to choose '2', the same machine
under the same circumstances would not accept the job.

Click here for details...

New in 6.4-4
For applications/renderers that do not support setting a specific number of threads,
this section is not visible.

Slots = Threads
If this box is checked, it tells Qube and the application (eg, Maya) to use the
specific number of threads listed in the "Specific Thread Count" field. If this is not
checked, then the "Specific Thread Count" value is passed only to the application,
but Qube is unaware of the number of cores/slots it should reserve. In most cases,
you will want to check this box, you have Designer licenses, in which caseunless
you would only set the numeric value.

Specific Thread Count
This tells the renderer to use a specific number of threads for rendering. The
default is one thread, which for any modern renderer will underperform, and when
combined with the slots=threads, will swamp most workers by running as many
instances as there are slots (eg, a 24 core machine would run 24 instances of the
application/renderer). A better value is 8 (assuming you have 8 cores, as most
modern machines do) which means that each instance of the job will use 8 threads
to render, and, when combined with slots=threads, will reserve 8 slots while doing
so.

Parameters Specific to Modo

Preemption
This option does not preempt any previously running instances on the
worker, it only prevents additional instances from being assigned to this
worker.

Designer License
Designer licenses are restricted to 1 slot, so if you are using a Qube
Designer license, set the Specific Thread Count, but check thedo not
"Slots=Threads" option.

Click for here for details...

modo_cl executable

Browse for or enter manually the location of modo_cl on the worker - e.g.
C:\Program Files\Luxology\modo\701_sp3\modo_cl.exe . This should never be left
blank.

LXO file

Browse or enter manually the location of the scene file to be rendered. This is a
required field for submission. Important: Best practice is to ensure the scene file
and all of its dependent files such as textures are on network storage accessible by
the workers.

Render Threads

Specify the number of threads to use for rendering (specifying 0 means the
instance uses all cores).

Render Directory

Browse for or manually enter the location of the output file you wish to generate.
Important: Best practice is to ensure outputs are written to network storage
accessible by the workers. This is normally already defined in the 3dsMax file.

Click here for details...

Qube Job Tags
New in Qube 6.5

Note: The Job Tags section of the submission UI will not be visible unless they are
turned on in the in the Wrangler View UI. Preferences Job Tags are explained in
detail on the page.Job Tags

http://docs.pipelinefx.com/display/QUBE066/WV+Preferences
http://docs.pipelinefx.com/display/QUBE066/Job+Tags

Click here for details...

Hosts

Explicit list of Worker hostnames that will be allowed to run the job
(comma-separated).

Groups

Explicit list of Worker groups that will be allowed to run the job
(comma-separated). Groups identify machines through some
attribute they have, eg, a GPU, an amount of memory, a license to
run a particular application, etc. Jobs cannot migrate from one
group to another. See .worker_groups

Omit Hosts

Explicit list of Worker hostnames that are not allowed run the job
(comma-separated).

Omit Groups

Explicit list of Worker groups that are allowed to run the jobnot
(comma-separated).

Priority Cluster

Clusters are non-overlapping sets of machines. Your job will run at
the given priority in the given cluster. If that cluster is full, the job
can run in a different cluster, but at lower priority. Clustering

http://docs.pipelinefx.com/display/QUBE066/worker_groups
http://docs.pipelinefx.com/display/QUBE066/Clustering

Example:

A job submitted to /showB/lighting will run with its given priority in /showB/lig

hting cluster.
If hat job can run in /showB/lighting is full, t /showB/FX,

.but at a lower priority
If both /showB/lighting and /showB/FX are full, the job can
run in /showA/* at an even lower priority.

Host Order

Order to select Workers for running the job (comma-separated) [+
means ascending, - means descending].

Host Order is a way of telling the job how to select/order workers

"+host.processors.avail" means prefer workers which have more slots
available
"+host.memory.avail" means prefer workers which have more memory
available
"+host.memory.total" means prefer workers which have more total
memory
"+host.processor_speed" means prefer workers with higher cpu speeds
"+host.cpus" means prefer workers with higher total cpu slots

Requirements

Worker properties needed to be met for job to run on that Worker
(comma-separated, expression-based). Click 'Browse' to choose
from a list of Host Order Options.

Requirements is a way to tell the workers that this job needs specific properties
to be present in order to run. The drop-down menu allows a choice of OS:

"winnt" will fill the field with "host.os=winnt" which means only run on
Windows based workers
"linux" will fill the field with "host.os=linux" which means only run on Linux
based workers
"osx" will fill the field with "host.os=osx" which means only run on OSX
based workers

You can also add any other Worker properties via plain text. Some examples:

"host.processors.avail.=4" means only run this job on workers that have 4 or
more slots available
"host.processors.used=0" means only run this job on workers with 0 slots in
use
"host.memory.avail=400" means only run this job on workers that have 400
memory available

With integer values, you can use any numerical relationships, e.g. =, <, >, <=,
>=. This won't work for string values or floating point values. Multiple
requirements can also be combined with AND and OR (the symbols && and ||
will also work).

The 'Only 1 of a "kind" of job' checkbox will restrict a Worker to running only one
instance with a matching "kind" field (see below). The prime example is After
Effects, which will only allow a single instance of AE on a machine. Using this
checkbox and the "Kind" field, you can restrict a Worker to only one running
copy of After Effects, while still leaving the Worker's other slots available for
other "kinds" of jobs.

Reservations

Worker resources to reserve when running job
(comma-separated, expression-based).

Reservations is a way to tell the workers that this job will reserve the specific
resources for this job.

Menu items:

"host.processors" this will fill the field with "host.processors=X" which
means reserve X slots on the worker while running this job
"host.memory" this will fill the field with "host.memory=X" which means only
reserve X memory on the worker while running this job

Other options:

"host.license.nuke=1" when a entry has been made youGlobal Resources
can reserve any arbitrary named item. Once you create aNew in 6.6:
global resource, it will show up in this menu (eg global.vray above).
See also Job Reservations

Restrictions

Restrict job to run only on specified clusters ("||"-separated) [+
means all below, * means at that level]. Click 'Browse' to choose
from a list of Restrictions Options.

http://docs.pipelinefx.com/display/QUB065/Global+Resources
http://docs.pipelinefx.com/display/QUB065/Job+Reservations

Restrictions is a way to tell the workers that this job can only run on specific
clusters. You can choose more than one cluster in the list.

Examples:

Choosing /showA would restrict the job to machines that are only in the
/showA cluster, and no other cluster, not even those below /showA.
Choosing /showA/* would restrict the job to the cluster(s) /showA, butbelow

 /showAnot including
Choosing /showA/+ would restrict the job to /showA and all the clusters
below it.

See Also

Controlling Host Selection
How to use qbwrk.conf
worker_groups
worker_cluster
How to use clustering for workers

Click here for details...

Flags

List of submission flag strings (comma separated). Click 'Browse'
to choose required job flags.

http://docs.pipelinefx.com/display/QUBE066/Controlling+Host+Selection
http://docs.pipelinefx.com/display/QUBE066/How+to+use+qbwrk.conf
http://docs.pipelinefx.com/display/QUBE066/worker_groups
http://docs.pipelinefx.com/display/QUBE066/worker_cluster
http://docs.pipelinefx.com/display/QUBE066/How+to+use+clustering+for+workers

See for a full explanation of flag meaningsthis page

Dependency

Wait for specified jobs to complete before starting this job

http://docs.pipelinefx.com/display/QUBE066/Job+Flags

(comma-separated). Click 'Add' to create dependent jobs.

You can link jobs to each other in several ways:

"complete" means only start this job after designated job completes
"failed" means only start this job if the designated job fails
"killed" means only start this job if the designated job has been killed
"done" means start this job if the designated job is killed/failed/complete

The second menu chooses between "job" (the entire set of frames) and "work"
(typically a frame). So to link frame 1 of one job to frame 1 of a second, job, you
would choose "work" in this menu. If you want to wait for all the frames of one
job to complete before starting a second, then choose "job". The other option,
"subjob", refers to the instance of a job. This is much less common, but means
that, for example, the instance of Maya that was running frames has completed.

For a complete description on how to define complex dependencies between
jobs or frames, please refer to the section of the Developers Guide.Callbacks

Email (job complete)

Send email on job completion (success or failure). Sends mail to
the designated user.

Email (failed frames)

Sends mail to the designated user if frames fail.

Blocked

Set initial state of job to "blocked".

Stderr->Stdout

Redirect and consolidate the job stderr stream to the stdout
stream. Enable this if you would like to combine your logs into one
stream.

Job Label

Optional label to identify the job. Must be unique within a Job
Process Group. This is most useful for submitting sets of
dependent jobs, where you don't know in advance the job IDs to
depend on, but you do know the labels.

Job Kind

Arbitrary typing information that can be used to identify the job. It
is commonly used to make sure only one of this "kind" of job runs
on a worker at the same time by setting the job's requirements to

http://docs.pipelinefx.com/display/QUBE066/Callbacks

include "not (job.kind in host.duty.kind)". See How to restrict a
host to only one instance of a given kind of job, but still allow other
jobs

Process Group

Job Process Group for logically organizing dependent jobs.
Defaults to the jobid. Combination of "label" and "Process Group"
must be unique for a job. See Process group labels

Retry Frame/Instance

Number of times to retry a failed frame/job instance. The default
value of -1 means don't retry.

Retry Work Delay

Number of seconds between retries.

Subjob Timeout

Kill the subjob process if running for the specified time (in
seconds). Value of -1 means disabled. Use this if the acceptable
instance/subjob spawn time is known.

Frame Timeout

Kill the agenda/frame if running for the specified time (in seconds).
 Value of -1 means disabled. Use this if you know how long
frames should take, so that you can automatically kill those
running long.

Click here for details...

Job Pre-flight
Some executable (e.g. a script) that will run before the job runs. Ifon the Worker
the pre-flight fails, the job will not run on this Worker, but will be moved to another.
Useful for setting up environments, copying required images, checking the
existence of fonts on the Worker, etc.

Job Post-flight
An executable that will run after the job has finished on that Worker. on the Worker
If this fails, the instance is failed.

Work Pre-flight
Some executable (e.g. a script) that will run before the frame/workon the Worker
runs. If this fails, the frame/work will be marked as failed and rendering will be
skipped. If there are retries configured, the frame/work will be treated according to
those settings.

Work Post-flight
An executable that will run after the frame/work runs. If this fails, theon the Worker
frame/work will be marked as failed, even if the render, itself, was succesful. If
there are retries configured, the frame/work will be treated according to those
settings.

Click here for details...

http://docs.pipelinefx.com/display/QUBE066/How+to+restrict+a+host+to+only+one+instance+of+a+given+kind+of+job%2C+but+still+allow+other+jobs
http://docs.pipelinefx.com/display/QUBE066/How+to+restrict+a+host+to+only+one+instance+of+a+given+kind+of+job%2C+but+still+allow+other+jobs
http://docs.pipelinefx.com/display/QUBE066/How+to+restrict+a+host+to+only+one+instance+of+a+given+kind+of+job%2C+but+still+allow+other+jobs
http://docs.pipelinefx.com/display/QUBE066/Process+group+labels

hh:mm M/D/Y
The job is blocked on the Supervisor until this day and time. Click on "Time and
Date" to get a calendar and time UI.

Click here for details...

Cwd

Current Working Directory to use when running the job.

Environment Variables

Environment variables override when running a job. You can
specify key/value pairs of environment variables

This is useful when you might need different settings for your render applications
based on different departments or projects.

Impersonate User

You can specify which user you would like to submit the job as.
The default is the current user. The format is simply <username>.
This is useful for troubleshooting a job that may fail if sent from a
specific user.

Example:

Setting "josh" would attempt to submit the job as the user "josh"
regardless of your current user ID.

Note: In order to do this, the submitting user must have "impersonate user"
permissions.

Click here for details...

GenerateMovie

Select this option to create a secondary job that will wait for the
render to complete then combine the output files into a movie.

Note: For this to work correctly the has to be setup"Qube (ImagesToMovie) Job..."
to use your studios transcoding application.

Click here for details...

Account

Arbitrary accounting or project data (user-specified). This can be

http://docs.pipelinefx.com/display/QUBE066/Qube+Movie+Job+Submission

used for creating tags for your job. The created tags can be
searched in the "Performance Charts" Tab.

You can add entries by typing in the drop-down window or select already created
accounts from the drop-down.

See also Qube! Job Tags

Notes

Freeform text for making notes on this job. Add text about the job
for future reference. Viewable in the Qube UI.

http://docs.pipelinefx.com/display/QUBE066/Job+Tags

	Modo Job Submission

