Basic python job submission lll. SimpleCmd
Compatibility and Application Specific Parameters

Next, we will learn how to populate a job dictionary keeping the Ul in mind. Doing so will allow the job to be resubmitted through the Ul.

In order to understand how to create a job that will properly populate a Ul for resubmission, we must first know how the Uls work. Qube! GUI
submission happens through something called SimpleCmds. SimpleCmds are python scripts that are read by the GUI during startup & can be
modified or created by users. SimpleCmd creation is outside of the scope of this document, but you can start reading up on them here: Creating
a new SimpleCmd or SimpleCmd Readme or by going to Help > "SimpleCmd Developer Guide" in the GUI.

In this exercise, we will work slightly backward - getting parameters from a previously submitted job. These parameters can be found through the
GUI by clicking on a previously submitted job then looking in the details pane > Job internals > Internal Data:

Job Properties Job Logs Output Dependency Graph Time Graphs Job Internals 9 b X

Internal Data History Stats Callbacks 1 [X

...or by using the API itself, using the gb.jobinfo(id=job_id) function.

Set up atest job

We will start by submitting a job to get started. Attached is a dummy "Maya BatchRender (rib)"
Rib_gen.xja

Download the above and open up in Qube! WranglerView by going to Submit > "Job From File..." menu > browse to the download location and
open. You will get the following submission dialog:

http://docs.pipelinefx.com/display/QUBE/Creating+a+new+SimpleCmd
http://docs.pipelinefx.com/display/QUBE/Creating+a+new+SimpleCmd
http://pipelinefx.com/docs/README_SIMPLECMD.html
http://docs.pipelinefx.com/download/attachments/3473766/Rib_gen.xja?version=1&modificationDate=1365504311000&api=v2

800 Resubmit Maya BatchRender (rib)

Qube Job Basics ¥ |
Name IMEl‘nyl BatchRender (rib) TUTORIAL I :
Priority 19999 | () :
Instances 1 | (4] :

Qube Frame Range ¥ [
Range 1-100 | I

Preview Frames Submission r [

~ | N

Preview Priority -1 BE |
Parameters r :
I

Render exe path Ifusrfautodeskfmaya?ﬂufbinfRend-Ig [Broawea || 0
]Type filename or click browse to ck

scenefile /mnt/storage /test.mb | Browse | :
Common options L J [
I
renderer rib I
proj /mnt/ storage/ I | Browse | :
o
I
¥

I
Camera options L J |
cam test I :
Render Layers ¥ |
rl test I :
o
v| |

| Set Defaults || Clear Defaults | [|Expert Mode || | Cancel | [Resubmit]

Scroll through this and note the fields. As you can see we have filled in a few of the commonly used fields. All the path parameters are for an
Linux OS, but that's of no concern to us. This job will almost certainly fail, but the point of this exercise is the parameters rather than the output of
the job. Feel free to use a different job that will work on your OS.

[Re]Submit the job. It will fail. That's fine.

Reverse Engineer to find parameters

As far as submitting through the Python API is concerned, in order for resubmission to work, we must first know which SimpleCmd to use. Above,
we described how to look at the job internals. Choose your preferred method, then look for the "simpleCmdType" parameter in the job's package.
You should see:

sinmpl eCdType : Maya Bat chRender (rib)

This parameter tells Qube! which submission dialog to use. In this case, we're using one called "Maya BatchRender (rib)". Take note of this for
later.

™

‘L)' Whena simplecmd is created, it is given a type name in its constructor. If you're looking at the code for the simpleCmds, this comes
from the line that starts with "cmdjob = SimpleCmd(..." and is the first parameter in that constructor.

Next, we'll need to know each of the parameters in the submission Ul that are specific to this particular job and application. All application-specific
parameters are in the job's package. Again, we can find this info either in job internals (from the GUI) or through the API's gb.jobinfo call. For this
job, the package parameters are as follows:

...

-cam . test

- proj : I mt/storage/

-renderer ©rib

-rl . test

cmdl i ne : "/usr/aut odesk/ maya2012/ bi n/ Render" -s QB _FRAME_START -e B_FRAME END -b

B_FRAME_STEP -cam "test" -rl "test" -proj "/mmt/storage/" -renderer "rib"
"/ mt/storage/test.nb"

mayaExe . [usr/aut odesk/ maya2012/ bi n/ Render
range : 1-100
scenefile : /mt/storage/test.nb

si npl eCdType : Maya Bat chRender (rib)

For the job to run correctly, as with the previous examples, we must only supply the "cmdline" parameter. However, for the submission Ul to be
properly populated for resubmission, we must also provide the other parameters.

Parameters to note:

® -cam, -proj, -renderer, -rl: these are parameters that will be passed directly. SimpleCmds are fairly clever with options like these & will
pass them directly to the command line by way of the command template to create the cmdline that we see above. This is to say that if
one were to change one of the values in the resubmitted submission Ul, the cmdline paramter would change to match.

®* mayaExe: much like the parameters above, the simpleCmd will use the mayaExe parameter to generate the cmdline parameter by way of
the command template.

® sceneFile: same as above. This parameter is necessary for resubmission as it will be used to generate the cmdline paramter.

* simpleCmdType: As mentioned at the beginning of this section, this will determine which submission Ul will be used.

Create the script

Using the information we've gleaned thus far, we can now generate our submission script that will properly resubmit through the GUI.

#!/usr/ bin/env python3
As in the last exanple, we will need the os, sys, and gb nodul es:
i mport o0s, sys
try:
i mport gb
except InportError:
if os.environ.get("QBDR"):
gbdir_api = os.path.join(os.environ.get("@D R'),"api", "python")
for api_path in (gbdir_api,
"/ Appl i cati ons/ pf x/ qube/ api / pyt hon/ ",
"/usr/local /pfx/qubel/api/python/",
"C:\\ Program Fil es\\ pf x\\ qube\\ api \\ pyt hon",
"C:\\Program Fil es (x86)\\ pfx\\qube\\api\\python"):
if api _path not in sys.path and os. path. exists(api_path):
sys. path.insert (0, api _path)
try:

http://docs.pipelinefx.com/download/attachments/3473766/Screen%20shot%202013-04-15%20at%206.06.06%20PM.png?version=1&modificationDate=1366074392000&api=v2
http://docs.pipelinefx.com/download/attachments/3473766/Screen%20shot%202013-04-15%20at%206.06.06%20PM.png?version=1&modificationDate=1366074392000&api=v2

i mport gb
except :
continue
br eak
this should throw an exception if we've exhuasted all other possibilities

i mport gb

Below is the main function to run in this script
def main():

The first few paraneters are the sane as the previous exanpl es
job = {}

job['nane'] = 'Maya BatchRender (rib) TUTORI AL'

job['prototype'] = 'cndrange'

job['cpus'] =1

job["priority'] = 9999

Bel ow creates an enpty package dictionary
package = {}

Below i nstructs the Qube! GU which subm ssion U to use for resubm ssion
package[' si npl eCndType'] = ' Maya Bat chRender (rib)'

Bel ow defines the canera used for the render
package['-canmi] = 'test’

Bel ow defines the project |ocation
package['-proj'] = '/mt/storage/’

Bel ow defines the nmaya renderer to be used
package[' -renderer'] = "'rib'

Bel ow defines the renderlayer to be rendered
package['-rl'] = "test'

Bel ow defines the conmand to be run. This is necessary for our APl subm ssion,
but will be re-generate based on user defined paraneters upon resubm ssion.

package['cndline'] = '"/usr/autodesk/ maya2012/ bi n/ Render" -s B_FRAVE _START -e
B_FRAVE _END -b B _FRAME_STEP -cam "test" -rl "test" -proj "/mt/storage/"
renderer "rib" "/mmt/storage/test.nb"'

Bel ow defines the nmaya executable | ocation
package[' mayaExe'] = '/usr/aut odesk/ maya2012/ bi n/ Render"'

bel ow defines the range of the job to be rendered
package['range'] = '1-100

Bel ow defines the scenefile |ocation
package[' scenefile'] = '/ mt/storage/test.nb'

Bel ow sets the job's package to the package dictionary we just created
job[' package'] = package

Using the given range, we will create an agenda |ist using qgb.genfranes
agenda = gb. genfranmes(package['range'])

Now that we have a properly formatted agenda, assign it to the job
job['agenda'] = agenda

i stOf JobsToSubmit = []
i st Of JobsToSubnit. append(j ob)

As before, we create a list of 1 job, then subnmit the list. Again, we
could submt just the single job wo the list, but submtting a list is
good form
listOf SubmittedJobs = gb.subnmit(listO JobsToSubnmit)
for job in IistO SubmittedJobs:

print(job["id])

Bel ow runs the "nmain" function
if name_ =" _ pmain__"

mai n()

sys. exit(0)

Try running this script ...

you will see that it pre fills all fields upon resubmission as if you had submitted the job from the GUI.

Continue to Basic dependencies

http://docs.pipelinefx.com/display/QUBE/Basic+dependencies

	Basic python job submission III. SimpleCmd Compatibility and Application Specific Parameters

