Adding Custom Plugins

Qube ArtistView can be customized through plugins. Plugins are python scripts that live in the "plugins” dir next to the qubeAtrtistView binary (or
within the application bundle on OS X). Plugins define both right-click menu items and the right-hand side tabs, e.g. Job Properties and Output
log.

® Plugin Paths
® Adding Custom Right Tabs
® Plugin Layout
® Types of Tab Plugins (tab_type attribute)
® Accessing Qube Information from the Plugin
® Example
® Adding Right-Click Menu Items
® Plugin Layout
Working with Permissions
Accessing Qube Information from the Plugin
Challenging the User - "Are you sure?"
Performing a search from a Plugin
Example

Plugin Paths

® You can easily navigate to the stock plugins dir by going to File > Open Plugins Directory
® You can add additional plugins path(s) under the Plugins tab in the preferences
® You can add additional plugins path(s) by setting a comma-separated list of paths in an environment variable called ARTI STVI EW_ADDI

TI ONAL_PLUGI NS_PATHS

Adding Custom Right Tabs

All of the right-side tabs in ArtistView are driven by Python plugins. Depending on the type of tab displayed, the plugin's job is to retrieve data
from the selected items (jobs, instances, frames, or hosts) and present some type of data to be displayed. While ArtistView is written in PyQt, no
knowledge of PyQt is needed to create a plugin.

Plugin Layout

® All plugins are of class UserUIPlugin and extend QbUIPIugin.
® |ntheclass's __init__ function, the following are defined:
® Required:
® name: the display name of the plugin
® type: the type of plugin. Options:
® tab: this plugin creates a new tab
® menu: this plugin creates a right-click menu item
® context: Where the tab will be displayed. Options:
® job: this tab plugin will be shown when the job list is visible.
® host: this plugin will be shown with the host/workers list is visible.
® tab_type: the type of tab plugin. See above "Types of Tab Plugins" for a list of options.
® functions: a dictionary that maps Ul focus to a plugin function. As an example, a tab plugin showing logs should show
the job log when the job list has focus, an instance log when the instance list has focus, and a frame log when the frame
list has focus. More information on the details of the user-defined function can be found in the section below entitled "Ac
cessing Qube Information from the Plugin"
® Optional:
® hidden: Setting this to true makes the function completely hidden from the Ul - it will not even show up in the
preferences.
® search_field: Setting this to true displays a search field below the content. That search field will search through
displayed content. This only has meaning for "html" plugins.
* frame_slider: Setting this to true displays a frame slider below the content. This only has meaning for "preview" plugins.
® aspect_mode: For the preview tab, this drives how the frame will fit into the window. Options:
® -1: display the original image - do not resize or scale.
® 0:ignore aspect ratio - stretch the image to fully fill the display window.
® 1:resize to fit within the display window, but maintain aspect ratio.
® 2:resize to fit shortest dimension into the display window, and maintain aspect ratio
® sort_order: order in which to display this tab in the list of tabs
® Beyond the __init__, only the functions defined in the functions member variable are required. They should return the data specified in
the "Types of Plugins" section above.

Types of Tab Plugins (tab_type attribute)

® html:
[]

* webkit:

[]

[]

[]
* tree:

[]

[]

[]

Example: The stock "Job Properties" tab
Will display basic html but not much in the way of css or javascript.
The functional goal of this plugin is to return basic html as a string.

Example: The stock "Thumbnails" tab.
Will display advanced html, including css and javascript - much like a typical web browser.
The functional goal of this plugin is to return a complete [x]html page.

Example: QubeTabTreeExample.py in the plugins directory
Will display a list of [nested] lists in a tree widget.
The functional goal of this plugin is to return a [nested list of] list[s].

® preview:

Example: The stock "Preview" tab.
Will create an image viewer with scrubber for flipping between output frames.
The functional goal of this plugin is to return a list of paths to images.

® openGL:

Deprecated in 6.5-0

Accessing Qube Information from the Plugin

In order for the plugin to do anything meaningful, it must know what entities are selected and have access to the Qube data that drives those
entities. Any user function defines must take the kwarg "**sel ect ed". Sel ect ed will be a dictionary containing lists of items that are selected
in the interface. The dictionary is keyed on the type of item. Regardless of the function, selected will always contain the following keys:

® jobs - a list of currently selected jobs, if any
subjobs - a list of currently selected subjobs/instances, if any

frames

- a list of currently selected frames/work items/agenda items, if any

[]
L]
® hosts - a list of currently selected hosts, if any
L]

user_response - True or False answer from challenge given to user (the challenge would come from an "askUser" function).

In the body of your custom function, then, you will retrieve the selected items that matter, based on your function mapping, and do with them what

you choose.

Example

This is the QubeTabHelloWorld.py example file you will find in your plugins directory. It unhidden, this plugin would display a tab called "Hello
Wold (tab)" that you display basic HTML about the currently selected items. The comments in this example have been changed from those you

will find on your system.

The plugin without docstrings and debug logging is quite simple:

i mport sys

i mport | o0gging

from view qubeArtistViewd Plugin inmport QoUl Plugin
fromhtm Uils inmport nakeHt m Tabl e

class User Ul Pl ugi n(QUIl Pl ugi n) :
def __init__(self):
super (User Ul Plugin,self).__init_ ()

sel f. nane = "Hello World (tab)" # Display nane of the plugin
sel f.type = "tab" # type of plugin - menu or tab
sel f.context = "] ob" # context in which the plugin will show
sel f. hidden = True # Flag to hide this plugin (default is
Fal se)
sel f.l og_separator_w dth = 60 # Spacer width in | og output
self.tab_type = "htm" # type of plugin - text == htni
sel f.search_field = Fal se # being a text type plugin, setting this to
"True" will give us a search field on the tab
sel f.sort_order = 11 # order this tab will show up in the |ist
of tabs
self.functions = {'job':self.hell oWrldJob
' subj ob' : sel f. hel | oWor | dSubj ob
"frane':sel f. hel | oWor!| dFr ane}
def hell oWwbrl dJob(sel f,**sel ected):
jobs = selected.get('jobs',[])
if not jobs:
return ' '
job_ids = [j['id"] for j in jobs]
sel ected_j ob = jobs[0]
selections = "Selected job ids are: %" %', '.join(nmap(str,job_ids))
single_selection = "<p>f we do an operation on one job, it will be job %" %
jobs[0].get('id")
return sel ections + single_selection
def hel | oWbr| dSubj ob(sel f, **sel ected):
subj obs = sel ected. get (' subjobs',[])
if not subjobs:
return '
subjob_ids = ['"%.%"' % (sj['pid],sj['id]) for sj in subjobs]
sel ect ed_subj ob = subj obs[0]
sel ections = "Sel ected subjob ids are: %" %', '.join(map(str,subjob_ids))
single_selection = "<p>f we do an operation on one subjob, it will be subjob
%l. %" % (sel ected_subj ob.get('pid), selected_subjob.get('id"))
return sel ections + single_selection
def hel |l oWor | dFranme(sel f, **sel ected):
frames = selected.get('franes',[])
if not franes
return '
frane_ids = ["%: %" % (f['pid],f["id"]) for f in franes]
sel ected_frane = franmes[0]
selections = "Selected frane ids are: %" %', '.join(map(str,frane_ids))
single_selection = "<p>If we do an operation on one frane, it will be franme

%l: %d" % (selected_frame.get('pid), selected frane.get('id"))
return selections + single_selection

With doc strings, you get a little more information:

QubeTabHelloWorld.py

i mport sys

i mport | oggi ng
from view qubeArtistViewd Plugin inport QoUl Plugin

class User Ul Pl ugi n(QUl Pl ugi n) :

User U Plugin - user created plugins for Qube U to add functinality
to the interface.

A plugin nust supply a type, nane, and context.
"name' is the display nane of the plugin

‘context' determ nes under which tabs this [tab] plugin
wi Il be displayed. Current avail able contexts are job, or host.

"type' is the type of plugin - nmenu or tab

"hidden' is a flag that, if set to True, will prevent the tab
from di spl ayi ng.

"sort_order' deternmines the order in which this tab will be displayed.
It relies on the fact that other [tab] plugins also define a
nunber. |If the nunber isn't defined, it's assigned the default of 999.

"tab_type' is a flag that deternmines the type of data displayed
in the tab widget & hints at the type of data expected.
Avai | abl e tab types are:
htm: WII display basic htm but not nmuch in the way of css.
tree: WII display a list of [nested] lists in a tree wi dget
preview. WIIl create an inage viewer with scrubber for flipping
bet ween out put franes.
openGL: WI I display non-interactive openG.

"search_field wll display a search field at the bottomof the tab
that will allow the user to search for text in the tab. This only
works with htm tabs.

"functions' is a mapping of functions to current context. For exanple,
with a tab that displays |ogs, one might want to display an entire job
|l og when the job list has focus or just the franme log if the frame I|ist
has focus. This napping provides the nechanismfor returning differnt
data depending on context. Possible function keys are 'job', 'subjob',
"frame', 'host'.

The plugin's 'functions' pass, as kwargs, the

currently selected job(s), subjob(s), frane(s), and/or host(s).
Each j ob, subjob, franme, or host, is a gb.Job, gb.Subjob, gb.Wrk,
or gb.Host, respectively, and can be operated on as one would with
the qb API.

def __init__(self):

super (UserU Plugin,self). _init_ ()# Required to initialize the parent

sel f. name = "Hello World (tab)" # Display nane of the plugin

sel f.type = "tab" # type of plugin - menu or tab

sel f.context = "job" # context in which the plugin will show -
job or host

sel f. hidden = True # Flag to hide this plugin (default is
Fal se)

self.tab_type = "htm" # type of plugin - text == htni

sel f.search_field = Fal se # being a text type plugin, setting this to
"True" will give us a search field on the tab

sel f.sort_order = 11 # order this tab will show up in the |ist
of tabs

This is the function nmapping - an essential part of a Tab plugin. This defines
whi ch functions
will be run based on the list which has focus in the interface.
self.functions = {'job':self.hell owrldJob,
' subj ob' : sel f. hel | oWor | dSubj ob,
"frame' :sel f. hel | oWor!| dFr ane}

def hel |l oWorl dJob(sel f,**sel ected):
This is the function that will be run by the U (as is defined in the
"functions' nenber
variable). The return value should be what is expected by the type of tab
we' re running.
Return val ues for types of tabs shoul d be:

"htm "' A single string of htmi. New ines are accepted. Sone css is
accept ed.
ex: <hl>Top</hl>Pre-formatted text:<pre> 1. thingl\n 2.
t hi ng2</ pre>
"tree': Alist/tuple of list/tuples. You can nest the lists if you want
to
create children. Al itenms in the list nust be strings (no ints)
ex: (("a','b",'c,("1,"2,"3,(aa","bb"))),('d,"e," "))
"preview : A list of image |ocations.

ex: ['/path/to/inage.0001l. png', '/path/to/imge.0002.png', ...]
The paranter 'selected wll have nost, if not all, of the follow ng keys:
j obs: A list of the selected jobs in the Ul

Each list itemis a subclass of a gb.Job & therefore has all the
attributes
that a gb.Job woul d have.

subj obs: A list of the sel ected subjobs
Each list itemis a subclass of a gb. Subjob

frames: A list of the selected franes
Each list itemis a subclass of gb. Wrk

host s: A list of the selected hosts
Each list itemis a subclass of gb.Host

This particular function will return basic HTM. about the current job selection(s).

| oggi ng. debug("% running %." % (self.nane, sys. _getfrane().f_code.co_nane)) #

this line is optional - it is for debugging only

jobs = selected.get('jobs',[]) # This gets you a list of Qube Jobs. Each

job is the sane as woul d be returned by gb.jobinfo()

jobs[0].

def

returns
basi c

if not jobs:

return '
job_ids = [j['id"] for j in jobs]
sel ected_job = jobs[0]

selections = "Selected job ids are: %" %', '.join(map(str,job_ids))
single_selection = "<p>If we do an operation on one job, it will be job %" %
get('id")

return sel ections + single_selection
hel | oWor | dSubj ob(sel f, **sel ected):
This function will be used when the subjob/instance |ist has focus. It

HTML about the current selection(s)

| oggi ng. debug("% running %." % (self.nane, sys._getfrane().f_code.co_nane))
subj obs = sel ected. get (' subjobs',[])
i f not subjobs:
return ' '
subjob_ids = ['"%.%"' % (sj['pid],sj['id]) for sj in subjobs]
sel ect ed_subj ob = subj obs[0]
sel ections = "Sel ected subjob ids are: %" %', '.join(map(str,subjob_ids))
single_selection = "<p>f we do an operation on one subjob, it will be subjob

%l: %" % (sel ected_subj ob.get('pid), selected_subjob.get('id))

def

returns
basi c

return selections + single_selection

hel | oWor | dFrane(sel f, **sel ected):

This function will be used when the subjob/instance |list has focus. It

HTML about the current selection(s)

| oggi ng. debug("% running %." % (sel f.nane, sys._getfranme().f_code.co_nane))

frames = selected.get('franes',[])
if not franes
return '
frane_ids = ["%: %" % (f['pid],f["id"]) for f in franes]
sel ected_frane = franmes[0]
selections = "Selected frane ids are: %" %', '.join(map(str,frane_ids))
single_selection = "<p>If we do an operation on one frane, it will be franme

%l: %d" % (selected_frame.get('pid), selected frane.get('id"))

return selections + single_selection

Adding Right-Click Menu Items

All of the right-click menu items in ArtistView are driven by Python plugins. These plugins have access to the data behind the selected entities
and can do with that data what they choose. When the plugin operation is complete, the interface will update. While ArtistView is written in PyQt,
no knowledge of PyQt is needed to create a plugin.

Plugin Layout

® All plugins are of class UserUIPlugin and extend QbUIPIlugin.
® All menu plugins must define __i ni t __ and r un methods.
® Inthe class's __init__function, the following are defined:
® Required:
® name: the display name of the plugin
® type: the type of plugin. Options:
® tab: this plugin creates a new tab
® menu: this plugin creates a right-click menu item
® context: Where the menu will be displayed - if you need the same menu in multiple places, you will need to create
multiple plugins. Options:
® job: this menu plugin will be a part of the right-click menu list when clicking on a job.
® subjob: this menu plugin will be a part of the right-click menu list when clicking on a subjob/instance.
¢ frame: this menu plugin will be a part of the right-click menu list when clicking on a frame/agenda item/work
item.
® host: this menu plugin will be a part of the right-click menu list when clicking on a job.
® Optional:
® hidden: Setting this to true makes the function completely hidden from the Ul - it will not even show up in the
preferences.
® permission: Permission required to use this plugin (see "Working with Permissions" section above")
® sort_order: order in which to display this tab in the list of tabs
® The class's run method does all the work.
® There is no return value.
® Run is passed a **selected argument that contains data from the interface. See "Access Qube Information from the Plugin”
® There is no limit to what the run method can do - it doesn't have to do anything Qube related. It could run a gb API call as well
as it could make a call to subprocess.Popen, interact with your production tracking system, etc.

Working with Permissions

Qube has a set of internal permissions viewable under the WV User Permissions in WranglerView. Those permissions determine which users
can perform which actions and are ultimately controlled by the supervisor. ArtistView can reflect those permissions in its interface by assigning a
per mi ssi on member variable to the permission required to perform the actions performed by the plugin. For example, in order to block a job,
one must have the "block" permission. In order the modify a job, one must have the "modify" permission.

These permissions can also be used as an obfuscation layer. For example, requiring an "admin" permission would block the plugin from being
performed by anyone who is not a Qube admin. This plugin could perform non-Qube-specific actions, but would only be available to Qube
administrators.

If a user does not have required permission to run the plugin, then the plugin will not show at all. If the user has required permission, but is not an
admin, then the plugin will be visible but disabled when the user attempts to perform the action on any entity they do not own (for example, one
cannot modify someone else's job unless they are an admin).

Accessing Qube Information from the Plugin

In order for the plugin to do anything meaningful, it must know what entities are selected and have access to the Qube data that drives those
entities. Any user function defines must take the kwarg "* *sel ect ed". Sel ect ed will be a dictionary containing lists of items that are selected
in the interface. The dictionary is keyed on the type of item. Regardless of the function, selected will always contain the following keys:

jobs - a list of currently selected jobs, if any
subjobs - a list of currently selected subjobs/instances, if any
frames - a list of currently selected frames/work items/agenda items, if any

°
°
L]
® hosts - a list of currently selected hosts, if any

http://docs.pipelinefx.com/display/QUBE/supervisor_default_security
http://docs.pipelinefx.com/display/QUBE/WV+User+Permissions

In the body of your run method, then, you will retrieve the selected items that matter, and do with them what you choose.

When the plugin completes, it signals the interface to update the related jobs or hosts.

Challenging the User - "Are you sure?"

If you would like to display a dialog that the user must agree to before the plugin is to be run, you do so by adding an askUser method to the
plugin class. This function should return a dictionary that drives the interface. That dictionary must contain the following key/value pairs:

® ‘“itle": The window title of the challenge dialog, i.e. "Performing an action"

® “text": The main text to be displayed, i.e. "Are you sure?"

® "info_text": The small-print text displayed below the main text, i.e. "You're about to do something important. Be sure you know what
you're doing."

® "detailed_text": If this exists, a "More info" button will be displayed that, when pressed, will expand the dialog, display a scroll bar & allow
much more text to be displayed, i.e. "This is what you're about to do to these jobs:"

® "icon": The type of icon to display. Options are (the strings):

‘information’ - a white speech box

‘question’ - a yellow question mark

'warning' - a yellow exclamation point

‘critical' - a red stop sign

'noicon' - nothing

® "hutton": A list of button(s) text to be displayed. All positive answers eventually return True, all negatives return False. Options are (the
strings):

L]

"ok’
‘cancel'
'save'
'discard’
ves'
o'
‘apply’
‘abort'
‘close’

Performing a search from a Plugin

If you would like to set a search field and perform a search, programmatically, from a plugin, you do so by adding an updat eUl method to the
plugin class. This function should return a dictionary of Ul fields that need updating. For 6.7, the only Ul fields that can be updated are the search
fields which are denoted by the keys sear ch_j obs, sear ch_f r anes, sear ch_i nst ances, or sear ch_wor ker s for the search field in the job

list, frame, list, instance list, or worker list, respectively.

For example, to perform a search for all jobs with a matching pgrp to the selected job(s), the updateUI function would look like:

def updateUl (sel f,**sel ected):
jobs = selected.get('jobs',[])
pgrp_id_searches = set(("pgrp: %" %[pgrp'] for j in jobs))
return {"search_jobs":" OR ".join(map(str,list(pgrp_id _searches)))}

..which would return a dictionary that looks like { " sear ch_j obs": " pgrp: 1234 OR pgrp: 1235"}. This would then fill the job list search field
with pgr p: 1234 OR pgr p: 1235 and perform the search.

(D Searches are performed after the plugin's run method is scheduled to run, however, because the run method runs in its own thread,
there is no guarantee that the run method will have completed before the search is performed.

Example

This is the QubeMenuJobHelloWorld.py plugin from the plugins directory that is shipped with ArtistView. If unhidden, this plugin will challenge the
user if they really wish to run the plugin. Their choice will logged to stderr in the run method.

The plugin without doc strings or the user challenge info is quite simple:

fromview qubeArtistViewdl Plugin inport QoUl Plugin
i mport gb
i mport | ogging
cl ass User Ul Pl ugi n(QUl Pl ugi n):
def __init__(self):
super (UserU Plugin,self).__init__()

sel f. name ="Hello Wrld (job)" # Display name of the plugin

self.type = "menu" # type of plugin - nmenu or tab

sel f.context = "job" # context in which the plugin will show
sel f. perm ssion = None # Qube permission required to performthis

task (optional)

sel f. hidden = True # Flag to hide this plugin (default is
Fal se)

sel f.sort_order = 15 # order this will show up in the nmenu

def run(self,**selected):

job_ids =[j.get('id") for j in selected.get('jobs',[])]

Confirmwi th user:

if not selected.get('user_response', True):
| oggi ng. i nfo("Skipping job hello world because of user response")
return

| ogging.info("Hello world plugin has conpl eted conplete for jobs %" %',

".join(map(str,job_ids)))

The same plugin with doc strings is a little more descriptive:

QubeMenuJobHelloWorld.py

from view qubeArtistViewd Plugin inport QoUl Plugin
i mport gb

i mport | ogging

class User Ul Pl ugi n(QU Pl ugin):

User U Plugin - user created plugins for Qube U to add functinality
to the interface.

A plugin nust supply a type, nane, context. A nenu plugin nust supply
a 'run' function.

"name' is the display nane of the plugin

"context' determines in which nenus/areas this [nenu] plugin

wi || be displayed. Current avail able contexts are job, subjob,
frame, host.

"type' is the type of plugin - nmenu or tab

"perm ssion' is the *Qube* perm ssion required to run this plugin
"hidden' is a flag that, if set to True, will prevent the nenu
item from displ ayi ng.

"sort_order' determnes the order in which this itemw Il show
inthe nenu. It relies on the fact that other [nmenu] plugins also define a
nunber. |f the nunber isn't defined, it's assigned the default of 999.

The plugin's run function passes, as kwargs, the
currently selected job(s), subjob(s), frane(s), host(s), and/or user
response if they were challenged by an askUser function definition.

Each j ob, subjob, franme, or host, is a gb.Job, gb.Subjob, gb.Wrk,
or gb.Host, respectively, and can be operated on as one would with
the gb API.
def __init_ (self):

super (User U Plugin,self). __init_ ()

sel f. nanme = "Hello Wrld (job)" # Display name of the plugin

sel f.type = "menu" # type of plugin - nenu or tab

sel f.context = "job" # context in which the plugin will show
sel f. perm ssion = None # Qube permi ssion required to performthis

task (optional)

sel f. hidden = True # Flag to hide this plugin (default is
Fal se)

sel f.sort_order = 15 # order this will show up in the nmenu

def askUser(self, **selected):

This function is designed to provide a nethod to allow a dialog to be

present ed

to the user prior to execution. The result will be available to the run
function

as a True or Fal se value attached to user_response in the 'selected kwargs
par am

of the run function, e.g. selected['user_response']

Return dict should have at |east one of the follow ng keys:

text (reqgired): Miin text of the dialog.
ex: 'You are about to do sonething...'

title: Text displayed in the title bar of the dial og.
ex: 'Doing Sonething.'

info_text: Smal | er text under the nain.
ex: 'Do you really want to do this thing to these things?

detailed_text: [Long fornm Details about what is going to happen - hidden by

defaul t.

ex: 'This thing you are about to do is going to do this, and
this,

and that; and is irreversible. Potentially effected jobs
are:.... '

i con: Type of icon to show on the dialog. Options are the strings:
"information', 'question', 'warning', 'critical', 'noicon'
ex: 'information'

butt on: List/tuple of button(s) to display. Options are the strings:
"ok', 'cancel'; 'save', 'discard'; 'yes', 'no'; "abort',

'cl ose'.

Note: Al positive options nmake the dialog return True,
all negative options return Fal se.
True: ok, yes, save, apply.
ex: ('yes','no")
job_ids =[j.get('id") for j in selected.get('jobs',[])]
jobs_str ="', ".join(map(str,job_ids))
return {"text":"Hello world "text' for job(s) %" %]jobs_str,
"info_text":"Hello world "info_text' for job(s)",
"detailed text":"Hello world 'detailed text' for jobs: %" %]jobs_str,
"title":"Hello world "title ",
"icon":"information",
"pbuttons": ("Ck","Cancel")}

def run(self,**sel ected):
This is the function that will be run by the U. There is no return val ue
When the run function conpletes, a signal is enmitted to the U to update
the job(s) that were effected. This signal will be sent regardl ess of whether
or not the user responded positively to the chall enge.
The paraneter 'selected” will have nost, if not all, of the follow ng keys
j obs: A list of the selected jobs in the U
Each list itemis a subclass of a gb.Job & therefore has all the
attributes
that a gb.Job woul d have

subj obs: A list of the selected subjobs
Each list itemis a subclass of a gb. Subjob

frames: A list of the selected franes
Each list itemis a subclass of gb. Wrk

host s: A list of the selected hosts
Each list itemis a subclass of gb.Host
user _response: A True/ Fal se response fromthe user, if the user was chal |l enged
(whi ch happens when this plugin defines an
"askUser (**sel ected)' method.
Note: All positive options neke the dialog return True
all negative options return Fal se
True: ok, yes, save, apply.
ex: ('yes','no")
job_ids =[j.get('id") for j in selected.get('jobs',[])]
Confirmwi th user:
if not selected.get('user_response', True):
| oggi ng. i nfo("Skipping job hello world because of user response")
return
l ogging.info("Hello world plugin has conpleted conplete for jobs %" %',

".join(map(str,job_ids)))

	Adding Custom Plugins

